1. Show that if $\lim a_n = a$ and $\lim b_n = b$, then $\lim a_n b_n = ab$.

2. Show that the Nested Interval Property implies the Axiom of Completeness.

3. Show that if 0 < r < 1, then $\lim r^n = 0$.

4. Define what it means for a sequence to be Cauchy and show that a Cauchy sequence converges.

5. Prove that a closed interval has the property that if it covered by a collection of open sets, then some finite sub-collection of the open sets covers.

6. If *f* and *g* are differentiable functions with domain all real numbers. If $g(x) \neq 0$, prove that $F(x) = \frac{f(x)}{g(x)}$ is differentiable at *c* and find the derivative

7. Prove the uniform limit of continuous functions is continuous.

8. Show that if f is a differentiable, real-valued function defined for all real numbers with a bounded derivative, then f is uniformly continuous.

9. Prove that if a power series $\sum_{n=0}^{\infty} a_n x^n$ converges at some point x_0 , then it converges absolutely for any x satisfying $|x| < |x_0|$.

10. Prove that if a power series $\sum_{n=0}^{\infty} a_n x^n$ converges for all $x \in (-R,R)$, then the differentiated series $\sum_{n=1}^{\infty} na_n x^{n-1}$ converges as well for all $x \in (-R,R)$.

11. If $P_n(x)$ is the nth degree Taylor polynomial for f(x), and $f(x) = P_n(x) + E_n(x)$, find $E_n(0), E_n^{(1)}(0), E_n^{(2)}(0), E_n^{(3)}(0), \dots, E_n^{(n)}(0)$ and a formula for $E_n^{(n+1)}(x)$. Explain your reasoning. ($E_n^{(k)}(x)$ is the kth derivative of $E_n(x)$.)

12. Define the lower and upper integrals of a function.

13. Prove that if a function f is continuous on a closed interval [a, b], then it is integrable.

14. State and prove one part (you choose) of the Fundamental Theorem of Calculus.

15. Assume that the functions f and |f| are integrable on the interval [a, b]. Show $\left|\int_{a}^{b} f\right| \le \int_{a}^{b} |f|$.

16. Let *f* be a differentiable function defined on [*a*, *b*] so that the derivative *f* of *f* is continuous. If $P = \{x_0, x_1, x_2, \dots, x_n\}$ is a partition of [*a*, *b*], show $\sum_{k=1}^{n} |f(x_k) - f(x_{k-1})| \le \int_{a}^{b} |f'|$.