Math 315 Sections 1 and 2
20 and 24 April 2007
D. Wright

Final
Name \qquad Show relevant work!

1. Show that if $\lim a_{n}=a$ and $\lim b_{n}=b$, then $\lim a_{n} b_{n}=a b$.
2. Show that the Nested Interval Property implies the Axiom of Completeness.
3. Show that if $0<r<1$, then $\lim r^{n}=0$.
4. Define what it means for a sequence to be Cauchy and show that a Cauchy sequence converges.
5. Prove that a closed interval has the property that if it covered by a collection of open sets, then some finite sub-collection of the open sets covers.
6. If f and g are differentiable functions with domain all real numbers. If $g(x) \neq 0$, prove that $F(x)=\frac{f(x)}{g(x)}$ is differentiable at c and find the derivative
7. Prove the uniform limit of continuous functions is continuous.
8. Show that if f is a differentiable, real-valued function defined for all real numbers with a bounded derivative, then f is uniformly continuous.
9. Prove that if a power series $\sum_{n=0}^{\infty} a_{n} x^{n}$ converges at some point x_{0}, then it converges absolutely for any x satisfying $|x|<\left|x_{0}\right|$.
10. Prove that if a power series $\sum_{n=0}^{\infty} a_{n} x^{n}$ converges for all $x \in(-R, R)$, then the differentiated series $\sum_{n=1}^{\infty} n a_{n} x^{n-1}$ converges as well for all $x \in(-R, R)$.
11. If $P_{n}(x)$ is the $\mathrm{n}^{\text {th }}$ degree Taylor polynomial for $f(x)$, and $f(x)=P_{n}(x)+E_{n}(x)$, find $E_{n}(0), E_{n}^{(1)}(0), E_{n}^{(2)}(0), E_{n}^{(3)}(0), \ldots, E_{n}^{(n)}(0)$ and a formula for $E_{n}^{(n+1)}(x)$. Explain your reasoning. $\left(E_{n}^{(k)}(x)\right.$ is the $k^{\text {th }}$ derivative of $E_{n}(x)$.)
12. Define the lower and upper integrals of a function.
13. Prove that if a function f is continuous on a closed interval [$a, \mathrm{~b}$], then it is integrable.
14. State and prove one part (you choose) of the Fundamental Theorem of Calculus.
15. Assume that the functions f and $|f|$ are integrable on the interval $[a, b]$. Show $\left|\int_{a}^{b} f\right| \leq \int_{a}^{b}|f|$.
16. Let f be a differentiable function defined on $[a, b]$ so that the derivative f^{\prime} of f is continuous. If $P=\left\{x_{0}, x_{1}, x_{2}, \ldots, x_{n}\right\}$ is a partition of $[a, b]$, show $\sum_{k=1}^{n}\left|f\left(x_{k}\right)-f\left(x_{k-1}\right)\right| \leq \int_{a}^{b}\left|f^{\prime}\right|$.
